基半PcoreTM2 E2B 全碳化硅半橋MOSFET模塊-工業(yè)級全碳化硅功率模塊
PcoreTM2 E2B 全碳化硅半橋MOSFET模塊BMF240R12E2G3
基半推出工業(yè)級全碳化硅MOSFET功率模塊Pcore™2 E2B,BMF240R12E2G3基于高性能 6英寸晶圓平臺設計,在比導通電阻、開關(guān)損耗、抗誤導通、抗雙極性退化等方面表現(xiàn)出色。
產(chǎn)品優(yōu)勢
- 更穩(wěn)定導通電阻
新型內(nèi)部構(gòu)造極大抑制了碳化硅晶體缺陷引起的Rds(on)波動。
- 更優(yōu)異抗噪特性
寬柵-源電壓范圍(Vgss: -10V~+25V),及更高閾值電壓范圍(Vth: 3V~5V),便于柵極驅(qū)動設計。
- 更高可靠性
高性能氮化硅AMB陶瓷基板及高溫焊料引入,改善長期高溫度沖擊循環(huán)的CTE失配。
應用領(lǐng)域:燃料電池DCDC、數(shù)據(jù)中心UPS、大功率快速充電樁等。
專業(yè)分銷基半國產(chǎn)車規(guī)級碳化硅(SiC)MOSFET,國產(chǎn)車規(guī)級AEC-Q101碳化硅(SiC)MOSFET,國產(chǎn)車規(guī)級PPAP碳化硅(SiC)MOSFET,全碳化硅MOSFET模塊,Easy封裝全碳化硅MOSFET模塊,62mm封裝全碳化硅MOSFET模塊,F(xiàn)ull SiC Module,SiC MOSFET模塊適用于超級充電樁,V2G充電樁,高壓柔性直流輸電智能電網(wǎng)(HVDC),空調(diào)熱泵驅(qū)動,機車輔助電源,儲能變流器PCS,光伏逆變器,超高頻逆變焊機,超高頻伺服驅(qū)動器,高速電機變頻器等,光伏逆變器專用直流升壓模塊BOOST Module,儲能PCS變流器ANPC三電平碳化硅MOSFET模塊,光儲碳化硅MOSFET。專業(yè)分銷基半SiC碳化硅MOSFET模塊及分立器件,全力支持中國電力電子工業(yè)發(fā)展!
碳化硅MOSFET具有優(yōu)秀的高頻、高壓、高溫性能,是目前電力電子領(lǐng)域最受關(guān)注的寬禁帶功率半導體器件。在電力電子系統(tǒng)中應用碳化硅MOSFET器件替代傳統(tǒng)硅IGBT器件,可提高功率回路開關(guān)頻率,提升系統(tǒng)效率及功率密度,降低系統(tǒng)綜合成本。適用于高性能變換器電路與數(shù)字化先進控制、高效率 DC/DC 拓撲與控制,雙向 AC/DC、電動汽車車載充電機(OBC)/雙向OBC、車載電源、集成化 OBC ,雙向 DC/DC、多端口 DC/DC 拓撲與控制,直流配網(wǎng)的電力電子變換器。
基半第二代碳化硅MOSFET系列新品基于6英寸晶圓平臺進行開發(fā),比上一代產(chǎn)品在比導通電阻、開關(guān)損耗以及可靠性等方面表現(xiàn)更為出色。在原有TO-247-3、TO-247-4封裝的產(chǎn)品基礎上,基半還推出了帶有輔助源極的TO-247-4-PLUS、TO-263-7及SOT-227封裝的碳化硅MOSFET器件,以更好地滿足客戶需求。
基半第二代碳化硅MOSFET亮點
更低比導通電阻:第二代碳化硅MOSFET通過綜合優(yōu)化芯片設計方案,比導通電阻降低約40%,產(chǎn)品性能顯著提升。
更低器件開關(guān)損耗:第二代碳化硅MOSFET器件Qg降低了約60%,開關(guān)損耗降低了約30%。反向傳輸電容Crss降低,提高器件的抗干擾能力,降低器件在串擾行為下誤導通的風險。
更高可靠性:第二代碳化硅MOSFET通過更高標準的HTGB、HTRB和H3TRB可靠性考核,產(chǎn)品可靠性表現(xiàn)出色。
更高工作結(jié)溫:第二代碳化硅MOSFET工作結(jié)溫達到175°C,提高器件高溫工作能力。
碳化硅 (SiC) MOSFET出色的材料特性使得能夠設計快速開關(guān)單極興器件,替代升級雙極性 IGBT (絕緣柵雙極晶體管)開關(guān)。碳化硅 (SiC) MOSFET替代IGBT可以得到更高的效率、更高的開關(guān)頻率、更少的散熱和節(jié)省空間——這些好處反過來也降低了總體系統(tǒng)成本。SiC-MOSFET的Vd-Id特性的導通電阻特性呈線性變化,在低電流時SiC-MOSFET比IGBT具有優(yōu)勢。
與IGBT相比,SiC-MOSFET的開關(guān)損耗可以大幅降低。采用硅 IGBT 的電力電子裝置有時不得不使用三電平拓撲來優(yōu)化效率。當改用碳化硅 (SiC) MOSFET時,可以使用簡單的兩級拓撲。因此所需的功率元件數(shù)量實際上減少了一半。這不僅可以降低成本,還可以減少可能發(fā)生故障的組件數(shù)量。SiC MOSFET 不斷改進,并越來越多地加速替代以 Si IGBT 為主的應用。 SiC MOSFET 幾乎可用于目前使用 Si IGBT 的任何需要更高效率和更高工作頻率的應用。這些應用范圍廣泛,從太陽能和風能逆變器和電機驅(qū)動到感應加熱系統(tǒng)和高壓 DC/DC 轉(zhuǎn)換器。
隨著自動化制造、電動汽車、先進建筑系統(tǒng)和智能電器等行業(yè)的發(fā)展,對增強這些機電設備的控制、效率和功能的需求也在增長。碳化硅 MOSFET (SiC MOSFET) 的突破重新定義了歷史上使用硅 IGBT (Si IGBT) 進行功率逆變的電動機的功能。這項創(chuàng)新擴展了幾乎每個行業(yè)的電機驅(qū)動應用的能力。Si IGBT 因其高電流處理能力、快速開關(guān)速度和低成本而歷來用于直流至交流電機驅(qū)動應用。最重要的是,Si IGBT 具有高額定電壓、低電壓降、低電導損耗和熱阻抗,使其成為制造系統(tǒng)等高功率電機驅(qū)動應用的明顯選擇。然而,Si IGBT 的一個顯著缺點是它們非常容易受到熱失控的影響。當器件溫度不受控制地升高時,就會發(fā)生熱失控,導致器件發(fā)生故障并最終失效。在高電流、電壓和工作條件常見的電機驅(qū)動應用中,例如電動汽車或制造業(yè),熱失控可能是一個重大的設計風險。
電力電子轉(zhuǎn)換器提高開關(guān)頻率一直是研發(fā)索所追求的方向,因為相關(guān)組件(特別是磁性元件)可以更小,從而產(chǎn)生小型化優(yōu)勢并節(jié)省成本。然而,所有器件的開關(guān)損耗都與頻率成正比。IGBT 由于“拖尾電流”以及較高的門極電容的充電/放電造成的功率損耗,IGBT 很少在 20KHz 以上運行。SiC MOSFET在更快的開關(guān)速度和更低的功率損耗方面提供了巨大的優(yōu)勢。IGBT 經(jīng)過多年的高度改進,使得實現(xiàn)性能顯著改進變得越來越具有挑戰(zhàn)性。例如,很難降低總體功率損耗,因為在傳統(tǒng)的 IGBT 設計中,降低傳導損耗通常會導致開關(guān)損耗增加。
作為應對這一設計挑戰(zhàn)的解決方案,SiC MOSFET 具有更強的抗熱失控能力。碳化硅 的導熱性更好,可以實現(xiàn)更好的設備級散熱和穩(wěn)定的工作溫度。SiC MOSFET 更適合較溫暖的環(huán)境條件空間,例如汽車和工業(yè)應用。此外,鑒于其導熱性,SiC MOSFET 可以消除對額外冷卻系統(tǒng)的需求,從而有可能減小總體系統(tǒng)尺寸并降低系統(tǒng)成本。
由于 SiC MOSFET 的工作開關(guān)頻率比 Si IGBT 高得多,因此它們非常適合需要精確電機控制的應用。高開關(guān)頻率在自動化制造中至關(guān)重要,高精度伺服電機用于工具臂控制、精密焊接和精確物體放置。此外,與 Si IGBT 電機驅(qū)動器系統(tǒng)相比,SiC MOSFET 的一個顯著優(yōu)勢是它們能夠嵌入電機組件中,電機控制器和逆變器嵌入與電機相同的外殼內(nèi)。使用SiC MOSFET 作為變頻器或者伺服驅(qū)動功率開關(guān)器件的另一個優(yōu)點是,由于 MOSFET 的線性損耗與負載電流的關(guān)系,它可以在所有功率級別保持效率曲線“平坦”。SiC MOSFET變頻伺服驅(qū)動器的柵極電阻的選擇是為了首先避免使用外部輸出濾波器,以保護電機免受高 dv/dt 的影響(只有電機電纜長度才會衰減 dv/dt)。 SiC MOSFET變頻伺服驅(qū)動器相較于IGBT變頻伺服驅(qū)動器在高開關(guān)頻率下的巨大效率優(yōu)越性.
盡管 SiC MOSFET 本身成本較高,但某些應用可能會看到整個電機驅(qū)動器系統(tǒng)的價格下降(通過減少布線、無源元件、熱管理等),并且與 Si IGBT 系統(tǒng)相比總體上可能更便宜。這種成本節(jié)省可能需要在兩個應用系統(tǒng)之間進行復雜的設計和成本研究分析,但可能會提高效率并節(jié)省成本?;?SiC 的逆變器使電壓高達 800 V 的電氣系統(tǒng)能夠顯著延長電動汽車續(xù)航里程并將充電時間縮短一半。
碳化硅 (SiC) MOSFET功率半導體技術(shù)代表了電力電子領(lǐng)域的根本性變革。SiC MOSFET 的價格比 Si MOSFET 或 Si IGBT 貴。然而,在評估碳化硅 (SiC) MOSFET提供的整體電力電子系統(tǒng)價值時,需要考慮整個電力電子系統(tǒng)和節(jié)能潛力。需要仔細考慮以下電力電子系統(tǒng)節(jié)?。?第一降低無源元件成本,無源功率元件的成本在總體BOM成本中占主導地位。提高開關(guān)頻率提供了一種減小這些器件的尺寸和成本的方法。 第二降低散熱要求,使用碳化硅 (SiC) MOSFET可顯著降低散熱器溫度高達 50%,從而縮小散熱器尺寸和/或消除風扇,從而降低設備生命周期內(nèi)的能源成本。 通常的誘惑是在計算價值主張時僅考慮系統(tǒng)的組件和制造成本。在考慮碳化硅 (SiC) MOSFET的在電力電子系統(tǒng)里的價值時,考慮節(jié)能非常重要。在電力電子設備的整個生命周期內(nèi)節(jié)省能源成本是碳化硅 (SiC) MOSFET價值主張的一個重要部分。